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Abstract. In this course we give an introduction to a modern area of analytic number theory.
In particular, we will study the analytic theory of the most basic automorphic forms. These

will be complex functions defined on the hyperbolic plane H being invariant under the action

of Fuchsian groups Γ ⊂ SL(2,R). After giving a short introduction to the main parts of the
theory, we discuss trace formulas and their applications to counting problems on Riemann

surfaces and arithmetic quantum chaos.

1. The hyperbolic plane and GL(2,R)-automorphic forms

Our goal in this course is to study the most classical example of nonholomorphic automorphic
forms, the Maass cusp forms and the nonholomorphic Eisenstein series defined on Riemann
surfaces of finite area. We will focus on some important topics of their spectral theory, mainly
the spectral theorem and trace formulas. We will also discuss Weyl’s and local Weyl’s laws
for the distribution of Laplace eigenvalues and eigenfunctions. We will apply this knowledge to
study counting problems and QUE problems on arithmetic surfaces. Due to lack of time we
omit totally some important parts of this beautiful theory, such as the Maass-Selberg relations,
bounds for Fourier coefficients of Maass forms, Kloosterman sums, Kuznetsov formula and the
sup norm problem. We also sketch only the basic ingredients about Hecke L-functions. Any
reader interested to learn more should refer to some of the standard modern references for this
area [2], [3], [4] or [5, Ch. 15].

1.1. Intuition coming from the Euclidean case. The notion of automorphic forms unifies
the different objects which look like ‘waves’ (periodic functions) defined on all different kind of
manifolds. The main property of waves is that they correspond to eigenfunctions of a Laplace
operator. The easiest such example are the periodic functions sinx and cosx on the real line.
The main goal of harmonic analysis is to understand the decomposition of sufficiently good (in
the L2-sense) functions in terms of Laplace eigenfunctions.

The prototype of harmonic analysis is the classical Fourier analysis on Euclidean spaces. The
n-dimensional Euclidean space

Rn = {x = (x1, x2, ..., xn) : xi ∈ R}(1.1)

is endowed with the standard Euclidean metric ds2 = dx2
1 + ...+dx2

n of constant curvature K = 0.
The Laplace-Beltrami operator associated to ds2 is

∆ =

n∑
i=1

∂2

∂x2
i

.(1.2)

Every sufficiently good function on Rn can be decomposed in terms of Laplace eigenfunctions.
The periodic functions

φy(x) = e(〈x,y〉) = e2πi〈x,y〉, y ∈ Rn(1.3)
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are eigenfunctions of −∆:

(∆ + λ(y))φy(x) = 0(1.4)

with λ = λ(y) = 4π2‖y‖2. Then every f ∈ L2(Rn) has a Fourier integral expansion

f(x) =

∫
Rn

f̂(y)e(−〈y,x〉)dy,(1.5)

where the Fourier transform f̂ is given by

f̂(y) =

∫
Rn

f(x)e(〈x,y〉)dx.(1.6)

If we are interested in periodic functions we naturally have to restrict our attention to the
n-dimensional flat torus, i.e. the quotient space Rn/Zn. Fourier analysis decomposes every
h ∈ L2(Rn/Zn) in a Fourier expansion

h(x) =
∑

m∈Zn

ame(〈x,m〉).(1.7)

Now assume f ∈ S(Rn) (the Schwarz space) and consider the integral opeator

Lf (g)(x) =

∫
Rn

f(x− y)g(y)dy =

∫
Rn/Zn

kf (x,y)g(y)dy(1.8)

where

kf (x,y) =
∑

m∈Zn

f(x− y + m).(1.9)

The geometric calculation of the trace gives

Trace(Lf ) =

∫
Rn/Zn

kf (x,x)dx =
∑

m∈Zn

f(m).(1.10)

The Fourier expansion of kf is given by

kf (x,y) =
∑

m∈Zn

f̂(m)e(〈x,m〉)e(〈y,m〉),(1.11)

so if we calculate the trace of Lf spectrally we get

Trace(Lf ) =

∫
Rn/Zn

kf (x,x)dx =
∑

m∈Zn

f̂(m).(1.12)

Thus we get the Poisson formula: ∑
m∈Zn

f(m) =
∑

m∈Zn

f̂(m),(1.13)

which follows after computing the trace of an integral operator with two different ways, geomet-
rically and spectrally.

The importance of this formula in classical and modern analytic number theory cannot be
underestimated, as it has turned out to have numerous applications in various important arith-
metic problems. Notice that for n = 1 if you apply (1.13) formally for f(x) = |x|−s (actually
for a smooth approximation of f) you derive the functional equation of Riemann’s zeta function
ζ(s). Moreover it was the historically first example of a trace formula. The name is coming from
the underlying principle that the proof of (1.13) was given by computing the trace of an operator
(here that crucial operator was Lf ) in two different ways. As we will see in the following sections,
an analogous formula can be proved for hyperbolic surfaces. But this formula turns out to be
much more complicated due to the fact that the group of automorphisms of the hyperbolic plane
is nonabelian.



SPECTRAL THEORY OF AUTOMORPHIC FORMS 3

1.2. The hyperbolic plane. We proceed to the main topic of this course starting with a basic
introduction to hyperbolic geometry. We will study automorphic forms defined on the hyperbolic
plane H, which can be viewed as the complex upper half-plane

H = {z = x+ iy ∈ C : y > 0} = {z ∈ C : =(z) > 0}.

Sometimes in the literature the hyperbolic n-space is denoted by Hn and the hyperbolic plane
is denoted by H2 to indicate the dimension. Since in this course we will restrict our attention
in dimension 2, we abbreviate the notation to H. The hyperbolic plane is endowed with the
hyperbolic metric

ds2 =
dx2 + dy2

y2
=
|dz|2

=(z)2
,

i.e., for a path γ = {z(t) = x(t) + iy(t), t ∈ [0, 1]} the hyperbolic length is given by

`(γ) =

∫ 1

0

√(
dx

dt

)2

+

(
dy

dt

)2
dt

y(t)
.

The distance ρ(z, w) between two points z, w ∈ H is now defined as

ρ(z, w) = min `(γ),

where the minimum is considered over all the paths γ from z to w. The distance function can
be expressed in various elementary ways. The most useful for calculations usually is

cosh ρ(z, w) = 1 + 2u(z, w),

where u(z, w) is the point pair invariant function (we will explain this terminology later)

u(z, w) =
|z − w|2

4=(z)=(w)
.(1.14)

The hyperbolic metric induces a hyperbolic measure dµ on H given by

dµ =
dxdy

y2
.

We will denote the hyperbolic area of a set A ⊂ H by µ(A) or vol(A). The space (H, ds, dµ) is a
Riemannian manifold of constant negative curvature K = −1. The hyperbolic lines (geodesics)
are represented by half-lines orthogonal to R and Euclidean semi-circles with center on R. The
hyperbolic circles are represented by Euclidean circles (but with different centers). Finally,
hyperbolic triangles satisfy the Gauss defect (special case of the Gauss-Bonnet formula).

Theorem 1.1. The hyperbolic area of a hyperbolic triangle A is given by

vol(A) = π − α− β − γ,

where α, β, γ are the interior angles of A.

1.3. Möbius transformations and the group of automorphisms. A Möbius transformation
γ : C→ C is a conformal mapping with

γ · z =
az + b

cz + d
,

where a, b, c, d ∈ R. We identify the transformation γ with the matrix(
a b
c d

)
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and we observe that we can obviously assume det(γ) = 1. We notice also that γ and −γ give the
same transformation. An immediate calculation gives

=(γz) =
=(z)

|cz + d|2
,(1.15)

hence every Möbius transformation acts on H. Thus, if we denote by G the group

SL2(R) =

{(
a b
c d

)
: (a, b, c, d) ∈ R4, ad− bc = 1

}
,(1.16)

then the group M of Möbius transformations is isomorphic to the group PSL2(R) = G/{±I}
(see exercise 5). A key fact is that the action of G is transitive and preserves the geometry of H.
To see this, notice

γz − γw =
z − w

(cz + d)(cw + d)
,

for every γ ∈ G, hence

dγz

dz
=

1

(cz + d)2
.

Using (1.15) we derive

|dγz|
=(γz)

=
|dz|
=(z)

.(1.17)

We conclude that Möbius transformations are isometries of the hyperbolic plane, i.e. ρ(γz, γw) =
ρ(z, w). In fact M is the group of isometries of H that preserve orientation. The whole group of
isometries of H is generated by the Möbius transformations and the reflection map z → −z.

1.4. Fuchsian groups and Riemann surfaces. Since PSL2(R) acts on H, so does any sub-
group Γ ⊂ PSL2(R). However, the orbit space Γ\H may not be sufficiently nice if we don’t
assume extra conditions on the group Γ. If we impose the condition Γ\H to be a Hausdorff
space, then it turns out that Γ must act discontinuously on H, i.e. for any z ∈ H the orbit Γz
has no limit points inside H (however the orbit Γz may have limit points in the boundary of H).
Poincaré proved the following fundamental theorem which classifies these groups.

Theorem 1.2. A group Γ′ of SL2(R) is discrete in the norm topology if and only if the projection
Γ of Γ′ in PSL2(R) 'M acts discontinuously on H.

Such a group is called a Fuchsian group. Not all of them are sufficiently nice for our purposes,
as the quotient space Γ\H can be arbitrarily large. For instance, consider the group Γ = 〈γ〉 with

γ =

(
1 1
0 1

)
.

In that case the quotient space has infinite hyperbolic area. However, the most obvious example
of a discrete subgroup of PSL2(R) is PSL2(Z) and in that case the quotient space has finite area.

Definition 1.3. A Fuchsian group Γ is called cofinite if the surface M = Γ\H satisfies

vol(Γ\H) <∞.

Further, if Γ\H is compact then Γ is called cocompact. The area of the modular surface
PSL2(Z)\H is equal to π/3 (see exercise 6) but the surface is not compact. There exists a more
refined notion measuring the ‘size’ of a Fuchsian group in terms of geometry. We do not discuss
the detailed definition here, but it turns out every Fuchsian group is either of the first kind (i.e.
cofinite), elementary (i.e. trivial) or of the second kind (i.e. not sufficiently large).

The quotient space Γ\H has a structure of a Riemann surface. That means Γ\H is not only
a Riemannian manifold (or orbifold, see subsection 1.6) of dimension 2 over R, but it is also a
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complex manifold of dimension 1 over C. From the point of view of algebraic topology the group
Γ is isomorphic to the fundamental group π1(M) ofM = Γ\H. The distance function ρ(z, w) in
H induces a distance ρΓ(z, w) in Γ\H given by

ρΓ(z, w) = inf
γ∈Γ

ρ(γz, w),

where each point in Γ\H is identified with one of its representatives in H.

1.5. Classification of group elements. An element γ ∈ PSL2(R) acts as a rigid motion on
the hyperbolic plane and this motion can be understood in terms of some invariants. First, the
identity element γ = I has trivial action, and we consider it as a special case. Except I, any
other element fixes one or two distinct points on H = H ∪ R ∪ {i∞}. If

az + b

cz + d
= z =⇒ cz2 + (d− a)z − b = 0,

and we consider separately the two cases c = 0 and c 6= 0. In the first case γ has a unique fixed
point z0 = b/(d− a) in R ∪ {i∞}. In the second case γ has two fixed points

z1,2 =
a− d±

√
(a+ d)2 − 4

2c
=
a− d±

√
tr (γ)

2 − 4

2c
.

If | tr (γ) | < 2 then z1,2 are complex conjugates, if | tr (γ) | = 2 then z1 = z2 ∈ R and if | tr (γ) | > 2
then γ has two distinct fixed points in R ∪ {i∞}. We have the following definition:

Definition 1.4. An element γ of Γ is classified as elliptic, parabolic or hyperbolic if |tr(γ)| < 2,
|tr(γ)| = 2 or |tr(γ)| > 2.

An important property of this definition is that it is invariant under conjugation. We can thus
split the group Γ in elliptic, parabolic and hyperbolic conjugacy classes

{γ} = {aγa−1 : a ∈ G}.
Parabolic and hyperbolic motions have infinite order, whereas elliptic motions have finite order.
In fact, a parabolic motion acts by translation, as it is conjugate to a transformation of the form

z →
(

1 v
0 1

)
z = z + v(1.18)

with v ∈ R (which fixes the point at infinity). A hyperbolic motion acts by dilation and it is
conjugate to a transformation of the form

z →
(
p1/2 0

0 p−1/2

)
z = pz(1.19)

with p ∈ R. This transformation fixes the two distinct points 0 and i∞. Finally, an elliptic
motion acts by rotation, it is conjugate to a transformation of the form

z →
(

cos θ sin θ
− sin θ cos θ

)
z(1.20)

with θ ∈ R (with unique fixed point in H the point z = i). A point z ∈ H is called a cusp for Γ
if it is the fixed point of a parabolic γ ∈ Γ. For example(

1 1
0 1

)
∈ PSL2(Z),

hence i∞ is a cusp of the modular group PSL2(Z). Further, if z1.2 ∈ R ∪ {i∞} are the two
fixed points of a hyperbolic element γ then γ maps the whole geodesic connecting z1 and z2

to itseld (but not identically). For example, the transformation (1.19) maps the imaginary axis
connecting 0 to i∞ to itself. That defines a 1-1 correspondence between closed geodesics on Γ\H
and hyperbolic conjugacy classes of Γ.
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For a fixed z ∈ H and a Fuchsian group Γ the stabilizer Γz ⊂ Γ is cyclic. An element γ0 is
called primitive if 〈γ0〉 = Γz for every fixed point z of γ0. Any other γ 6= I is a power of a unique
primitive element γ = γn0 for some n ∈ Z.

1.6. Fundamental domains. Two points z, w ∈ H are said to be Γ-equivalent if w ∈ Γz. We
have the following definition.

Definition 1.5. A set F ⊂ H is called a fundamental domain for Γ if:
(a) F is a domain in H,
(b) any two distinct points in F are not Γ-equivalent,
(c) any orbit of Γ contains a point in F .

A fundamental domain for Γ is a model for the quotient space Γ\H. The cusps of Γ are on the
boundary of H and there exist only finitely many Γ-inequivalent cusps. They indicate whether
a fundamental domain for Γ touches the topological boundary of H. If Γ has elliptic points then
Γ\H has conical points and is not smooth (in that case Γ\H is called orbifold). A fundamental
domain for the modular group is given by the domain F = {z ∈ H : |z| > 1,<(z) < 1/2}, which
touches H only at i∞.

Proposition 1.6. A cofinite group Γ is cocompact if and only if Γ\H does not have cusps, i.e.
if and only if Γ does not contain parabolic elements.

If Γ\H has cusps then for every cusp a there exists a matrix σa ∈ PSL2(R) such that

σa∞ = a, σ−1
a Γaσa =

{(
1 n
0 1

)
/{±I} : n ∈ Z

}
,

where Γa is ths stabilizer of a in Γ. Since Γa is cyclic we write γa to denote a fixed generator of
Γa. For example, for Γ = PSL2(Z) we have

Γi∞ =

〈(
1 1
0 1

)〉
.

1.7. Examples of arithmetic groups. Among the whole zoo of Fuchsian groups, a special
case is that of arithmetic groups. We already mentioned the most standard group of this kind,
which is the modular group PSL2(Z) ⊂ PSL2(R). This is the projective quotient SL2(Z)/{±I}
of the group

SL2(Z) =

{(
a b
c d

)
: (a, b, c, d) ∈ Z4, ad− bc = 1

}
.(1.21)

The modular group is cofinite and the modular surface has a unique cusp at i∞. We will not
try here to define rigorously the notion of an arithmetic group. Instead, we will use some of the
standard examples of arithmetic groups, such as SL2(Z) and its congruence subgroups of level
N ≥ 1 defined by

Γ(N) =

{(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
⊂ SL2(Z),

Γ0(N) =

{(
a b
c d

)
: c ≡ 0 mod N

}
⊂ SL2(Z),

Γ1(N) =

{(
a b
c d

)
: c ≡ 0 mod N, a ≡ d ≡ 1 mod N

}
⊂ SL2(Z).
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Any of the groups Γ defined above have finite index [SL2(Z) : Γ] in SL2(Z) and the quotient
space Γ\H has finite hyperbolic area equal to [SL2(Z) : Γ] vol(SL2(Z)\H). In particular we have

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
.

Hence congruence subgroups are cofinite arithmetic Fuchsian groups.
There exist arithmetic groups which are cocompact. These groups arise from quaternion

algebras. For a, b square-free integers with a > 0 let

H =

(
a, b

Q

)
(1.22)

be the indefinite quaternion algebra over Q linearly generated by {1, ω,Ω, ωΩ}, where ω2 = a,
Ω2 = b and ωΩ + Ωω = 0. We say that H ramifies at p if Hp = H ⊗Q Qp is a division algebra.
Let N(x) denote the norm of x ∈ H. For R a maximal order of H, denote by R(n) the elements
x ∈ R of norm n. Denote also by φ the embedding that maps

x = x0 + x1ω + x2Ω + x3ωΩ = ξ + ηΩ(1.23)

to

φ(x) =

(
ξ η
bη ξ

)
.(1.24)

Then, the group

ΓH := φ(R(1)) ⊂ SL2(R)(1.25)

is a Fuchsian group of the first kind, and the quotient ΓH\H is a Riemann surface. The discrim-
inant D = DH of the algebra is defined as the product of the ramified primes of H.

Now let D,N be natural numbers such that: i) D is a product of an even number of different
primes and, ii) N > 1 is a natural number with (D,N) = 1. If R = O(D,N) is an Eichler order
of level N and φ a monomorphism : H →M2(R), we denote the group ΓH associated to O(D,N)
and φ by Γ(D,N). We have

Γ(D,N) ⊂ SL2(Q(
√
a)).(1.26)

The theory of Shimura provides a canonical model X (D,N) for Γ(D,N)\H and a modular
interpretation. The canonical model X (D,N) is a projective curve defined over Q. The quotient
Γ(D,N)\H is noncompact if D = 1 (the nonramified case), and in this case we have X (1, N) =
Γ0(N)\H. If D > 1, then X (D,N) is a compact surface. The curves X (D, 1), for D > 1, can be
viewed as the compact analogues of the modular surface X (1, 1) = PSL2(Z)\H.

1.8. The Laplace-Beltrami operator. On every Riemannian manifold with arbitrary Rie-
mannian metric

ds2 =
∑
i,j

gi,jdxidxj(1.27)

we define a Laplace (or Laplace-Beltrami) operator ∆ expressed in local coordinates xi as

∆ = − 1√
det(gij)

∑
i,j

∂

∂xi

√
det(gij)g

ij ∂

∂xj
(1.28)
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where gij are the entries of the inverse matrix of (gij). In the case of the hyperbolic plane the
Laplace-Beltrami operator reduces to

∆ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

This Laplacian implies a Laplacian on every surface Γ\H and has a rich and beautiful spectral
theory. In order to explain this, we need to consider functions living on the Riemann surfaces.

1.9. Automorphic functions and automorphic forms. The theory of automorphic functions
had already been investigated since the time of Poincaré and many people had contributed to
this, with Hecke being probably the main contributor.

Definition 1.7. A function f : H→ C is said to be automorphic with respect to Γ if

f(γz) = f(z)

for every γ ∈ Γ.

Clearly, such a function defines a function on the surface f : Γ\H→ C. We denote the space
of Γ-automorphic functions by A(Γ\H). A crucial question is whether such functions exist and,
if so, how can we construct them. The most obvious way to construct an automorphic function
is by the method of images: if p(z) is a function of rapid decay on the hyperbolic plane then

f(z) =
∑
γ∈Γ

p(γz)(1.29)

is automorphic. Another way is averaging not over the whole group but only over cosets of Γ.
Assume for a while that Γ is not cocompact and for a fixed cusp a consider the element σa from
(1.6). Then the so called Poincaré series defined by

Ea(z|p) =
∑

γ∈Γa\Γ

p(σ−1
a γz)(1.30)

is automorphic for any function p(z) which is Γi∞-periodic and of moderate growth. For functions
defined on the Riemann surface Γ\H we have the Petersson inner product given by

〈f, g〉 =

∫
Γ\H

f(z)g(z)
dxdy

y2
.

The Hilbert space

L2(Γ\H) =
{
f ∈ A(Γ\H) : ‖f‖2 := 〈f, f〉1/2 <∞

}
(1.31)

will be the main object of interest in our analysis of automorphic forms. The group PSL2(R)
leaves invariant the Laplace-Beltrami operator in H. That means

∆fγ(z) = ∆f(γz)

for any fixed γ ∈ PSL2(R), where fγ(z) := f(γz). Moreover, any PSL2(R)-invariant differential
operator on H is a polynomial on ∆ with constant coefficients. That means the Laplacian
generates the algebra of invariant differential operators.

An application of Stokes’ theorem shows that ∆ is symmetric with respect to the Petersson
inner product in a dense subspace of L2(Γ\H):

〈f,∆g〉 = 〈∆f, g〉(1.32)

for any f, g in the space

D(Γ\H) := {f ∈ B(Γ\H) : ∆f ∈ B(Γ\H)}(1.33)
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where B(Γ\H) denotes the space of bounded functions on Γ\H. One can also directly show that

〈−∆f, f〉 =

∫
Γ\H
|∇f |2dxdy ≥ 0,(1.34)

hence −∆ is non-negative in D(Γ\H).
Analysis’ goal in to understand function spaces defined on the manifolds of interest. The main

object of harmonic analysis is to understand these function spaces through the spectral resolution
of the Laplace-Beltrami operator, i.e. expanding sufficiently good functions in terms of Laplace
eigenfunctions. This naturally leads to the definition of automorphic forms, given by Maass on
1949.

Definition 1.8 (Maass). A smooth automorphic function f ∈ A(Γ\H) that is an eigenfunction
of −∆:

(∆ + λ)f = 0

is called an automorphic form.

We denote by As(Γ\H) the space of eigenfunctions of −∆ on Γ\H with eigenvalue λ = s(1−s).
For notational reasons we also write s = 1/2 + it, hence λ = 1/4 + t2. Notice that t ∈ R if and
only if <(s) = 1/2, i.e. if and only if λ ≥ 1/4. The eigenvalues λ < 1/4 will called small (or
exceptional) eigenvalues of Γ.

To study the spectral resolution of ∆ one has to understand the algebra of PSL2(R)-invariant
integral operators on H. These are operators of the form

Lk(f)(z) =

∫
H
k(z, w)f(w)dµ(w).(1.35)

They are natural generalizations of the operator (1.8). When the kernel k(z, w) is point pair
invariant (meaning k(γz, γw) = k(z, w) for all γ ∈ PSL2(R)) then k(z, w) depends only on the
function u(z, w) defined in (1.14). We can then write k = k(u) and moreover we can write

Lk(f)(z) =

∫
Γ\H

K(z, w)f(w)dµ(w)(1.36)

for

K(z, w) =
∑
γ∈Γ

k(u(γz, w)),(1.37)

which is called the automorphization of kernel k(u). We will not proceed in the proof of spectral
resolution with details, although we will sketch the main arguments of the proof. The integral
operators play a crucial role in the proof, but we will also refer to them later, when we will discuss
the pre-trace formula and the hyperbolic lattice counting problem. For noncompact surfaces, a
crucial part in the proof of the spectral theorem is the analytic continuation of Eisenstein series.
We will retun to this topic in section 2.

1.10. The spectral theorem for compact surfaces. When the surface Γ\H is compact, the
Hilbert-Schmidt theory applies to sufficiently modified integral operators on Γ\H. This gives the
spectral resolution of ∆ in the space D(Γ\H). Applying Friedrichs extension theorem and the
spectral theorem for symmetric operators on Hilbert spaces we get a unique self-adjoint extension
of the Laplacian on the whole L2-space. The method of proof works in some generality; the
following result holds for any compact Riemannian manifold.

Theorem 1.9. Let ∆ denote the Laplacian obtained as the Friedrichs extension of (1.8) on the
L2(Γ\H). Then the operator −∆ has only discrete spectrum {λj}∞j=0 such that λ0 = 0 corresponds
to the constant eigenfunction and 0 < λ1 ≤ λ2 ≤ ... ≤ λj ≤ ... with λj →∞ as j →∞.
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We denote by {uj(z)}∞j=0 a set of Maass forms, i.e. an orthogonal system of eigenfunctions of
the Laplacian:

(∆ + λj)uj(z) = 0.

We will also assume that uj are L2-normalized, i.e. ‖uj‖2 = 1. We thus conclude every f ∈
L2(Γ\H) has a spectral expansion of the form

f(z) =
∑
λj≥0

〈f, uj〉uj(z).(1.38)

1.11. The spectral resolution for noncompact surfaces: Eisenstein series. Assume now
that Γ is cofinite but not cocompact. We can use the Poincaré series from (1.30) to construct
automorphic forms. Notice that if p(z) is an eigenfunction of −∆ then so is Ea(z|p) but due to
convergence issues we have to assume growth conditions for p(y). Choosing p(y) = ys, which is
an eigenfunction of −∆, then the Eisenstein series defined by

Ea(z, s) =
∑

γ∈Γa\Γ

(
=(σ−1

a γz)
)s
.(1.39)

is an automorphic form by construction. As a complex function of s ∈ C the series is well-defined
for <(s) > 1 thus it is not in L2(Γ\H). Notice that this construction is well-defined for every
inequivalent cusp a of Γ.

For the understanding of the L2-space the meromorphic continuation of Ea(z, s) is necessary
to the whole complex plane. That was one of the main achievements of Selberg in 1956. We will
sketch the proof of this result for the modular surface in the next section. As a summary, we
conclude the operator −∆ has continuous spectrum covering the interval [1/4,∞) with multi-
plicity equal to the number of cusps. For a point λ = s(1− s) = 1/4 + t2 ≥ 1/4 in the continuous
spectrum the corresponding eigenfunction is the Eisenstein series evaluated on the critical line:(

∆ +
(
1/4 + t2

))
Ea (z, 1/2 + it) = 0.

For understanding the spectral theory in Γ\H it is important that the only poles of the Eisenstein
series Ea(z, s) in <(s) > 1/2 are simple and real, see [3]. The residues are eigenfunctions of ∆ in
L2(Γ\H). We will return to these residues in the next subsection.

1.12. The discrete specrtum: Maass cusp forms. If Γ has cusps, a straightforward calcu-
lation shows that an automorphic form in L2 is orthogonal to the meromorphically continued
Eisenstein series Ea(z, s) if the zero Fourier coefficients in the Fourier expansion around cusp a
vanishes identically. Thus the eigenfunctions of ∆ that are smooth functions in Γ\H and have
exponential decay at every cusp a of Γ are called Maass cusp forms.

Maass cusp forms belong in L2 (Γ\H). In that case, an orthonormal basis {uj(z)} of eigen-
functions for the (possibly infinite) discrete spectrum {λj} consists of the Maass cusp forms and
the residues of the Eisenstein series. Hence, for noncompact surfaces we have the spectral de-
composition of the L2-space in Maass cusp forms, residues of Eisenstein series at <(s) > 1/2 and
Eisenstein series:

L2(Γ\H) = L2
cusp(Γ\H)⊕ L2

res.(Γ\H)⊕ L2
Eisen.(Γ\H).(1.40)

Notice that we have included the constant eigenfunction corresponding to λ0 = 0 in the cuspidal
part.

1.13. Exercises. 1) Prove that if f(x) is a distance function then so is f̂(y).

2) Prove the Fourier expansiom (1.11) (i.e. that the Fourier coefficient of kf (x,y) is indeed

equal to f̂(m)).
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3) Prove that if z = pi with p > 0 and w = i then ρ(z, w) = log p. Prove also that if

γ =

(
a b
c d

)
then 2 cosh ρ(γi, i) = a2 + b2 + c2 + d2.

4) Prove equation (1.15).

5) Prove that a hyperbolic circle of radius R and centre z = i is also a Euclidean circle, of
radius r = sinhR and centre z = i coshR.

6) Prove that the Möbius transformations form indeed a group M isomorphic to PSL2(R).

7) Prove that the modular group is generated by the matrices

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
.

(Hint: You can assume c ≥ 0. For c = 0 the matrix is a power of T . For c ≥ 1 use the Euclidean
algorithm on the pair a, c). Using that, prove that the domain F = {z ∈ H : |z| > 1,<(z) < 1/2}
is indeed a fundamental domain for the modular surface.

8) Assuming exercise 7 prove that

vol(PSL2(Z)\H) =
π

3
.

9) Let A ⊂ H be any set and γ ∈ PSL2(R) with γ 6= ±I. Prove that for sufficiently small ε > 0
we have

vol({z ∈ A : ρ(γz, z) < ε}) = 0,

if (i) γ is hyperbolic or if (ii) γ is parabolic and A is compact.

10) Show that ∑
(m,n)∈Z2\{0,0}

1

|mz + n|2s

converges absolutely for any z ∈ H and for any s with <(s) > 1.

2. Spectral theory of the hyperbolic Laplacian and Hecke operators

We already discussed a large part of the basic spectral theory on L2(Γ\H) and the spectral
resolution of the Laplace-Beltrami operator. As we mentioned already, a key ingredient in the
full spectral theorem is the analytic continuation of the Eisenstein series. In the case of the
modular surface this is much simpler than the case of a general cofinite group.

2.1. Analytic continuation of Eisenstein series. We discuss the proof of the analytic con-
tinuation of the Eisenstein series Ea(z, s) for <(s) ≤ 1. We will first deal with the simple case
Γ = PSL2(Z), where we have the Eisenstein series corresponding to the unique cusp i∞ of the
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modular surface. After some analytic manipulation the Eisenstein series takes the form

E(z, s) =
∑

γ∈Γi∞\Γ

(=(γz))
s

= ys +

∞∑
c=1

∑
d∈Z,(d,c)=1

ys

|cz + d|2s
(2.1)

= ys + φ(s)y1−s +
∑
n6=0

φ(n, s)Ks−1/2(2πny)e(nx)

(this expression has to be slightly modified for s = 1/2). Here Kν(x) stands for the modified
Bessel function of the second kind and of order ν. This is the Fourier expansion of E(z, s). The
Fourier coefficient φ(s) is called the scattering determinant and is given by the quantity

φ(s) =
Λ(2− 2s)

Λ(2s)
, Λ(s) = π−s/2Γ(s/2)ζ(s).(2.2)

The coefficients φ(n, s) are also given in terms of arithmetic functions:

φ(n, s) =
πs

Γ(s)ζ(2s)
√
|n|

∑
ab=|n|

(a
b

)s−1/2

.(2.3)

The invariance of φ(s) under the change of variable s → 1 − s is clear and the same holds for
φ(n, s), although this is not so clear from (2.3). These properties imply the functional equation
for E(z, s); in particular they give

E(z, s) = φ(s)E(z, 1− s).(2.4)

Examining poles and residues we verify that φ(s) is holomorphic for <(s) ≥ 1/2 except one
simple pole at s = 1. This pole has residue the constant function

1

2Λ(2)
=

1

vol(SL2(Z)\H)
=

3

π
.

For a general cofinite group, the proof is much more sophisticated. A proof of Selberg using
Fredholm theory of integral equations can be found in [3]. An important fact arising in the proof
is that the functional equation of the Eisenstein series at the inequivalent cusps is related to all
the Eisenstein series simultaneously; that means one has to treat the family of Eisenstein series
E(z, s) = (Ea(z, s))a as a single vector. The functional equation then reads

E(z, s) = Φ(s)E(z, 1− s).(2.5)

The matrix Φ(s) is called the scattering matrix and determinant det Φ(s) = φ(s) is the scattering
determinant.

2.2. The Spectral theorem and the pre-trace formula. We wrote the spectral decompo-
sition of L2(Γ\H) in subsections (1.10) and (1.12). We now write down the spectral theorem
explicitly in the following form:

Theorem 2.1 (Spectral theorem in L2(Γ\H) (Selberg , Huber , Roelcke)). Every function f ∈
L2(Γ\H) has a spectral expansion

(2.6) f(z) =
∑
λj≥0

〈f, uj〉uj(z) +
1

4π

∑
a

∫ ∞
−∞
〈f,Ea(·, 1/2 + it)〉Ea(z, 1/2 + it)dt,

which converges in the norm topology. Here, the second sum is over all the (finitely many)
inequivalent cusps a of Γ, if Γ contains parabolic elements. If f(z) belongs to the domain D(Γ\H)
of functions f ∈ A(Γ\H) such that f and ∆f are smooth and bounded, then the expansion (2.6)
converges pointwise absolutely and uniformly on compact sets.
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Around the same time this theorem was already known independently to Roelcke (and later
Huber) but in the weaker version of the cocompact case (as they were missing the analytic
continuation of Eisenstein series).

There is a special consequence of the spectral theorem we are particularly interested in. This
is the spectral theorem for automorphic kernels, the so-called pre-trace formula. As in (1.35) let
Lk be an integral operator in H defined by

(2.7) Lk(f)(z) =

∫
H
k(z, w)f(w)dµ(w),

where k : H×H→ C is the kernel of L and the functions k, f are such that the integral converges
absolutely. The operator L is SL2(R)-invariant if and only if k is point-pair invariant kernel and
thus if and only if k depends only on u(z, w) given by formula (1.14).

Assume that k(u) is smooth enough. The invariant integral operators commute with the
Laplace operator. Hence, an eigenfunction of ∆ in H is also an eigenfunction for all invariant
integral operators. If

(∆ + λ) f(z) = 0,

for λ = 1/4 + t2 then we will have

(2.8)

∫
H
k(u(z, w))f(w)dµ(w) = h(t)f(z)

for some function h(t) depending only on k. This function h(t) is called the Selberg/Harish-
Chandra transform of the kernel k(u). For given k(u) the transform h(t) is the Fourier transform
of the Abel transform of k; more precisely it can be computed in three steps by the formulas:

q(v) =

∫ +∞

v

k(u)√
u− v

du,

g(r) = 2q

((
sinh

r

2

)2
)
,(2.9)

h(t) =

∫ +∞

−∞
eirtg(r)dr.

The Selberg/Harish-Chandra transform is an even function of t. The required smoothness of
k(u) can be expressed in terms of h(t): it must be holomorphic in the strip |=t| ≤ 1/2 + ε for an
ε > 0 and it must satisfy the bound

h(t)� (|t|+ 1)−2−ε(2.10)

inside this strip. Under these assumptions we can invert the process and compute k(u) for a
given h(t):

g(r) =
1

2π

∫ +∞

−∞
eirth(t)dt,

q(v) =
1

2
g
(
2 log

(√
v + 1 +

√
v
))
,(2.11)

k(u) = − 1

π

∫ +∞

u

1√
v − u

dq(v).

The proof of relations (2.9) is rather elementary, since h(t) in (2.8) does not depend on the test
function f and the point z. We have thus freedom to choose the function and the point that
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bring (2.8) in a simpler form. Picking fw) = (=(w))s (with s = 1/2 + it) and z = i we get

h(t) =

∫
H
k(u(i, w))(=(w))sdµ(w)

= 2

∫ ∞
0

∫ ∞
0

k

(
x2 + (y − 1)2

4y

)
ys−2dxdy(2.12)

and using the change of variables x = and y = er we derive (2.9).
We thus get some flexibility in choosing appropriately k(u) or h(t). This flexibility becomes

even more obvious in the pre-trace formula giving the spectral expansion of the automorphization
kernel K(z, w). If we restrict the domain of the operator Lk to Γ-automorphic functions f we
get

(2.13) (Lf)(z) =

∫
Γ\H

K(z, w)f(w)dµ(w),

where K(z, w) is the automorphic kernel given by (1.37). We view K(z, w) as a function of z.
Then, we compute the Fourier coefficients of K, which are given by

〈K(·, w), uj〉 = h(tj)uj(w),(2.14)

〈K(·, w), Ea(·, 1/2 + it)〉 = h(t)Ea(w, 1/2 + it).

The spectral theorem implies that the automorphic kernel K has the following spectral expansion.

Theorem 2.2 (Pre-trace formula). Assume the pair k(u) and h(t) is related by equations (2.9)
and h(t) satisfies (2.10). Then the automorphic kernel given by (1.37) has the spectral expansion

K(z, w) =
∑
j

h(tj)uj(z)uj(w)

+
1

4π

∑
a

∫ ∞
−∞

h(t)Ea(z, 1/2 + it)Ea(w, 1/2 + it)dt,(2.15)

which converges absolutely and uniformly on compact sets.

An automorphic kernel K(z, w) that is absolutely integrable on the diagonal z = w is said
to be of trace class. For those kernels one can go further and deduce the Selberg trace formula,
which relates the spectrum of the Laplacian with the length spectrum of Γ\H. An immediate
application of the Selberg trace formula is Weyl’s law which, roughly speaking, counts the size
of the spectrum up to height T . For instance, in the simple case that Γ is cocompact Weyl’s law
states that, as T →∞, we have the asymptotic formula

(2.16) #{j : |tj | ≤ T} ∼
vol(Γ\H)

4π
T 2.

There are specific arithmetic groups for which we know a stronger form of Weyl’s law. Selberg
has proved that for congruence groups we have

(2.17) #{j : |tj | ≤ T} =
vol(Γ\H)

4π
T 2 +O(T log T ).

We will give a proof of (2.16) in the next section as an application of Selberg’s trace formula.

2.3. Local Weyl’s law. For many applications the following local version of Weyl’s law is
sufficient since it implies an average bound for automorphic forms in the spectral limit.

Theorem 2.3 (Local Weyl’s law). For every z, as T →∞, we have the asymptotic

(2.18)
∑
|tj |<T

|uj(z)|2 +
∑
a

1

4π

∫ T

−T
|Ea (z, 1/2 + it) |2dt ∼ cT 2,

where c = c(z) depends only on the number of elements of Γ fixing z.
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Local Weyl’s law can be proved using the automorphic heat kernel and a Tauberian argument.
When z remains in a bounded region of H the constant c(z) is uniformly bounded, depending
only on Γ. For z not remaining in a compact set, instead of the asymptotic (2.18) one can refer
to the following Bessel’s inequality, where the second term depends on the height function of z:

(2.19)
∑
|tj |<T

|uj(z)|2 +
∑
a

∫ T

−T
|Ea(z, 1/2 + it)|2dt� T 2 + TyΓ(z).

The height function yΓ(z) is defined as

yΓ(z) = max
a

max
γ∈Γ
{=(σ−1

a γz)}.(2.20)

This function is bounded for compact surfaces but increases as y escapes close to the cusps.

2.4. Hecke operators and Hecke eigenvalues. If λj is an eigenvalue of the cofinite group Γ
then the Maass form uj attached to λj has a Fourier expansion analogous to that of Eisenstein
series (2.1). This Fourier expansion around the cusp a is of the form

uj(σaz) = ρaj(0)y1−sj + 2
∑
n 6=0

y1/2ρaj(n)Kitj (2π|n|y)e2πinz.(2.21)

The zero coefficient vanishes if uj is a Maass cusp form. Otherwise uj is a linear combination of
Eisenstein series at sj > 1/2. The tail of the series behaves like an expansion in exponentials since
the K-Bessel function finally smooths out. The coefficients ρaj(n) determine the Maass form.
What is perhaps the most important feature of the theory is that when the group is arithmetic
then a natural commutative algebra of Hecke operators exists. These operators help us with
the study of the spectral theory in that case. As in the case of classical modular forms, we can
choose a basis of eigenfunctions in our function space which diagonalizes the Hecke operators.
The coefficients ρaj(n) in that case are related to the eigenvalues of the Hecke operators. To
what follows we simplify the notation working with the subgroup Γ0(N) and the cusp a = i∞.

The n-th Hecke operator Tn is a sum over cosets of the set

Γn =

{(
a b
c d

)
: (a, b, c, d) ∈ Z4, ad− bc = n

}
.(2.22)

Notice that Γ1 = SL2(Z). For n ∈ N, the operator Tn : A(SL2(Z)\H)→ A(SL2(Z)\H) is defined
by

Tn(f)(z) :=
1√
n

∑
γ∈Γ1\Γn

f(τz)

=
1√
n

∑
ad=n

∑
b( mod d)

f

(
az + b

d

)
.(2.23)

The n-th Hecke operator is bounded on L2(SL2(Z)\H), self-adjoint and commutes with the
Laplacian ∆ (we can say that ∆ plays the role of an infinite analogue operator T∞) and further
every two Hecke operators commute. Hence we can choose a joint orthonormal basis uj of Maass
forms (we call them Hecke-Maass forms). We denote by λj(n) the eigenvalue of Tn for uj(z), i.e.

Tnuj(z) = λj(n)uj(z),(2.24)

and ηt(n) for the Eisenstein series, i.e.

TnE∞(z, 1/2 + it) = ηt(n)E∞(z, 1/2 + it),(2.25)

where

ηt(n) =
∑
ad=n

(a
d

)it
.
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For level N ≥ 1 we have A(SL2(Z)\H) ⊂ A(Γ0(N)\H). Every Hecke operator Tn acts on
A(Γ0(N)\H), but the important cases are those with (n,N) = 1; in that case we can similarly
pick common eigenfunctions satisfying (2.24), (2.25).

The multiplicativity relations of Hecke operators (see exercise 5) pass to their eigenvalues
λj(n). They are Hecke multiplicative:

λj(m)λj(n) =
∑

d|(m,n)

λj

(mn
d2

)
.

This notion includes the usual definition of multiplicative functions and much more; it allows us
to define L-functions attached to the coefficients λj(n) having good Euler products. This will be
discussed in subsection 4.1.

2.5. Exercises. 1) If k(u) is the characteristic function of the interval [0, X] prove that the
Selberg/Harish-Chandra transform hX(t) behaves asymptotically as

hX(t) ∼ |t|−3/2X1/2+it.(2.26)

as X, |t| → ∞.

2) Prove relations (2.14).

3) Prove that the index of Γn in the modular group is equal to

[SL2(Z) : Γn] =
∑
d|n

d = σ(n).

Conclude that the norm of Tn in L2(SL2(Z)\H) satisfies

‖Tn‖ ≤
σ(n)√
n
.

4) After choosing a set of specific representatives of Γ1\Γn prove the second equation in (2.23)

5) Prove that

TmTn =
∑

d|(m,n)

Tmn
d2
,

hence TmTn = TnTm for every m,n.

2.6. Open problems. Here we state some interesting and extremely hard open problems which
still play a key role in the progress of modern research.

1) Selberg’s eigenvalue conjecture: is it true that λ1(Γ(N)) > 1/4? We don’t know that, but
Selberg proved that λ1(Γ(N)) > 3/16 for every N ≥ 1. Since then this result has been improved
in various directions.

2) The Sarnak-Phillips theory: for a generic cofinite group Γ, there are few (possibly finite)
Maass forms. This conjecture is interesting, since it predicts that the general case is in contrast
with the case of arithmetic groups.

3) Ramanujan conjecture: for (n,N) = 1 we have λj(n) � nε. This conjecture is proved in
the case of holomorphic modular forms (by Deligne) but the best current bound for Maass forms
is λj(n)� n7/64+ε. This conjecture is quite similar to the Selberg eigenvalue conjecture.
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3. An introduction to Trace formulas and applications

3.1. Intuition from the Trace formula in the Euclidean case. Selberg trace formula was
historically the first noncommutative trace formula. To understand this, we return to the Eu-
clidean harmornic analysis. In the Euclidean space Rn the trace formula (1.13) has a very simple
form (it is actually symmetric) and was proved computing the trace of an invariant integral
operator in two different ways, geometrically and spectrally. A similar analysis in our case in-
dicates that the negative curvature makes the geometric side much more difficult. To do the
computations for Γ\H one has to consider the contribution of different conjugacy classes of Γ in
the geometric side; when the group of automorphisms is abelian these computations are trivial
(as in the Euclidean case). However, we know that the Fuchsian groups are far away from being
abelian, and the rich family of their conjugacy classes forces us to treat each of them separately.

When the cofinite group Γ is not cocompact, an extra difficulty enters the game: in this case
the trace of the integral operator K diverges. One has to truncate the fundamental domain F
of Γ\H and compute the trace of the operator on the central part of F . This truncation can be
measured by a height Y (indicating how much of the domain we have cut). The trace of K in
the geometric side diverges like A1 log Y + B1 and in the spectral side like A2 log Y + B2. Not
very surprisingly the equation A1 = A2 is a tautology and in that case the trace formula is the
equality B1 = B2.

3.2. Preliminary estimates. Assume that k is a sufficiently smooth kernel and assume for a
moment that k is compactly supported. Consider the kernel from (1.35):

Lk(f)(z) =

∫
H
k(z, w)f(w)dµ(w).(3.1)

Then for K as in (1.37):

K(z, w) =
∑
γ∈Γ

k(u(γz, w)),(3.2)

we get

Lk(f)(z) =

∫
Γ\H

K(z, w)f(w)dµ(w)(3.3)

The trace of L = Lk can be computed in two ways: geometrically it is equal to

Trace(Lk) =

∫
Γ\H

K(z, z)dµ(z).(3.4)

Spectrally, if we assume for a moment that Γ is cocompact, then using the pre-trace formula we
get the expansion

K(z, z) =
∑
j

h(tj)|uj(z)|2(3.5)

thus we get directly

Trace(Lk) =

∫
Γ\H

K(z, z)dµ(z) =
∑
j

h(tj).(3.6)

The other option that we have is to integrate the geometric quantity (3.2). In that case we get

Trace(Lk) =
∑
γ∈Γ

∫
Γ\H

k(γz, z)dµ(z).(3.7)

It was Selberg who first understood how one can proceed with (3.7) in order to get an explicit
expression for the trace of Lk. His idea was to consider the partition of Γ into conjugacy classes
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and compute each of them separately. If we denote by C = {g} a conjugacy class of Γ, then we
can write

Trace(Lk) =
∑
C

∑
γ∈C

∫
Γ\H

k(γz, z)dµ(z)

=
∑
C={g}

∑
τgτ−1:τ∈Γ

∫
Γ\H

k(τgτ−1z, z)dµ(z).(3.8)

Notice that two elements τ1, τ2 ∈ Γ give the same element in the inner sum if and only if

τ1gτ
−1
1 = τ2gτ

−1
2 ⇐⇒ τ−1

2 τ1g = gτ−1
2 τ1 ⇐⇒ τ−1

2 τ1 ∈ Z(g),(3.9)

where the set Z(γ) is the centralizer of an element γ ∈ Γ defined by

Z(γ) = {γ′ ∈ Γ : γ′γ = γγ′}.

Thus we can write

Trace(Lk) =
∑
C={g}

∑
τ∈Z(g)\Γ

∫
Γ\H

k(τgτ−1z, z)dµ(z)

=
∑
C={g}

∫
Z(g)\H

k(gz, z)dµ(z)(3.10)

where in the last line we unfolded the integral.
The importance of this computation is great because the quotient space Z(g)\H is a much

simpler domain in H and allows us to compute the integral directly. Of course there are some
serious calculations that have to be done in order to arrive to the final version of Selberg’s trace
formula, but the main idea of the proof was the split in conjugacy classes. We also have to notice
that the so-called orbital integral inside the final sum in (3.10) depends only the conjugacy class
of g in the group SL2(R). That allows us to pick the elements of Γ, perhaps after conjugating
the group, in one of the special subgroups

N =

{(
1 x
0 1

)
: x ∈ R

}
,

A =

{(
a 0
0 a−1

)
, a ∈ R+

}
,(3.11)

K =

{(
cos θ sin θ
− sin θ cos θ

)
, θ ∈ R

}
.

3.3. Some calculations. Let’s look first at the spectral side. If Γ is cocompact then the spectral
side is just (3.6). If we have also continuous spectrum, then we have to truncate the fundamental
domain up to height Y , so that we stay away from the cusps. We denote this domain FY and
we need to calculate ∑

j

h(tj)

∫
FY

|uj(z)|2dµ(z)

+
1

4π

∑
a

∫ ∞
−∞

h(t)

∫
FY

|Ea(z, 1/2 + it)|2dt.(3.12)

The discrete spectrum remains the same up to an error term O(Y −ε) and at the end we will
leave Y →∞. The continuous contribution needs a much more technical computation. It finally
takes the form

− 1

4π

∫ ∞
−∞

φ′(1/2 + it)

φ(1/2 + it)
h(t)dt+

h(0)

4
tr (Φ) (1/2) + g(0)h log Y +O(Y −1),(3.13)
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where g is the Fourier transform of h(t), Φ is the scattering matrix, h is the rank of this matrix
and φ(s) is the scattering determinant. Keep in mind that the spectral side is the easy side of
the trace formula!

For the geometric side, the easy part if the contribution of the identity class which is just
equal to ∫

Γ\H
k(z, z)dµ(z) = k(0) vol(Γ\H) =

vol(Γ\H)

4π

∫ ∞
−∞

t tanh(πt)h(t)dt.(3.14)

. The rest of the computations become much more technical and a full proof of Selberg’s trace
formula remains out of the goals of this course. However, we can state the trace formula for
reasons of completion.

Theorem 3.1 (Selberg Trace Formula, 1956). Assume that h(t) is an even function which is
holomorphic in the strip |=t| ≤ 1/2 + ε for some ε > 0 and satisfies the bound

h(t)� (|t|+ 1)−2−ε(3.15)

inside the strip. Let g be the Fourier transform of h. Then∑
j

h(tj)−
1

4π

∫ ∞
−∞

φ′(1/2 + it)

φ(1/2 + it)
h(t)dt

=
vol(Γ\H)

4π

∫ ∞
−∞

t tanh(πt)h(t)dt

+
∑
{P}

∞∑
`=1

g(` log p) log p

p`/2 − p−`/2
(3.16)

+
∑
{R}

m−1∑
`=1

(2m sin(π`/m))−1

∫ ∞
−∞

h(t)
coshπ(1− 2`/m)t

coshπt
dt

+
h(0)

4
(tr (I)− trΦ(1/2))− g(0)h log 2− h

2π

∫ ∞
−∞

h(t)ψ(1 + it)dt.

The left hand contains information about the spectrum of the Riemann surface Γ\H whereas the
right side contains information from the conjugacy classes of the Fuchsian group. The contribu-
tion of the parabolic classes is known as the length spectrum of Γ.

The Selberg trace formula is one of the most powerful tools in the spectral theory of auto-
morphic forms. It gives an explicit relationship between the geometric information attached to
a group and spectral data of the Laplace operator. The first corollary of Selberg’s trace formula
is Huber’s theorem which explains this interplay between the Laplace spectrum and the length
spectrum.

Theorem 3.2 (Huber). For Γ\H smooth and compact the eigenvalue spectrum and the lentgh
spectrum (considered with multiplicities) determine each other.

Proof. In that case the group has only hyperbolic elements (and the identity element) hence the
trace formula takes the form∑

j

h(tj) =
vol(Γ\H)

4π

∫ ∞
−∞

t tanh(πt)h(t)dt+
∑
{P}

∞∑
`=1

g(` log p) log p

p`/2 − p−`/2
.(3.17)

The statement follows from the flexibility in choosing the pair (h, g). �
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3.4. Application to Weyl’s law. The first application Selberg gave for his formula was Weyl’s
law:

Theorem 3.3. Let Γ be a cofinite group. Then

(3.18) #{j : |tj | ≤ T} −
1

4π

∫ ∞
−∞

φ′(1/2 + it)

φ(1/2 + it)
dt ∼ vol(Γ\H)

4π
T 2.

Proof. Pick the test function h(t) = eδt
2

. The Fourier transform is g(x) = (4πδ)−1/2e−x
2/4δ.

Here δ is a small positive parameter. Then, the hyperbolic and the elliptic elements contribute
in the trace formula a bounded quantity. The identity element contributes

(3.19)
vol(Γ\H)

4π
δ−1

and the parabolic elements contribute at most O(δ−1/2 log δ). The result follows using a Taube-
rian argument. �

3.5. Application to prime geodesics counting. The second major application of trace for-
mula is the Prime geodesic theorem. This problem asks to count how many primitive closed
geodesic on the Riemann surface Γ\H (or general hyperbolic manifolds) have length ≤ logX.
This problem has great similarities with the Prime number theorem counting the number of
prime numbers up to a fixed height X. Huber and Selberg first discovered that the number of
such closed geodesics behaves asymptotically like X/ logX. This is not just a coincidence since
the general set-up of the two problems have striking similarities.

In the theory of prime numbers the Prime number theorem states

ψ(X) =
∑
pk≤X

log p ∼ X.(3.20)

The growth of the error term E(X) = ψ(X)−X is related to the Riemann Hypothesis. The size
of the error is governed by the exponential sum

E(X) ∼
∑
ρ

Xρ

ρ
,(3.21)

where the sum runs over all the nontrivial zeros ρ of the Riemann zeta function ζ(s); the conjec-
tural bound E(X) = Oε(X

1/2+ε) is equivalent to RH.
We will state the Prime geodesic theorem on Γ\H in terms of the Chebyshev function

ψΓ(X) =
∑

{P}:N(P )≤X

ΛΓ(N(P )),(3.22)

where the sum in (3.22) is taken over the hyperbolic classes of Γ, N(P ) denotes the norm of the
hyperbolic element P and the von Mangoldt function is given by ΛΓ(N(P )) = logN(P0) if P
is a power of a primitive hyperbolic element P0 and zero otherwise. The norm of a hyperbolic
element is defined as follows: if P = Pn0 with P0 primitive and conjugate to a matrix of the form(

p1/2 0
0 p−1/2

)
, p > 1

then N(P ) = p. The length of the P -invariant primitive closed geodesic on Γ\H2 is equal to
logN(P0) = log p. We have the following result:

Theorem 3.4. For any cofinite group Γ we have

ψΓ(X) =
∑

1/2<sj≤1

Xsj

sj
+ EΓ(X),(3.23)

where the error term satisfies the bound EΓ(X) = O(X3/4).
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Proof. Notice that instead of picking h(t) we can pick its Fourier transform g(x), which deter-
mines the Fourier pair h, g. Pick a test function of the form g(x) = 2 cosh(x/2)q(x) where q(x)
is even, smooth and compactly supported in an interval [− log(X + Y ), log(X + Y )]. Then for
sj > 1/2 we have

h(tj) =
Xsj

sj
+O(Y +X1/2).(3.24)

The discrete eigenvalues with <(sj) = 1/2 contribute O
(
|sj |X1/2 min{1, X2Y −2|sj |−2}

)
. The

whole discrete spectrum gives the expected main term and an error O(Y + X3/2Y −1). The
continuous spectrum contribution goes in the error term.

On the geometric side the identity class, the elliptic classes and the parabolic classes contribute
at most X3/2Y −1. Comparing the two sides and choosing q(x) close to the characteristic we get

ψΓ(X) =
∑

N(P )≤X

ΛΓ(N(P )) =
∑
pk≤X

log p =
∑

1/2<sj≤1

Xsj

sj
+O(Y +X3/2Y −1).(3.25)

To get the desired error we pick the balance Y = X3/4. �

For arithmetic groups Γ further improvements on the bound for the error term can be deduced
as an application of the (Bruggeman-)Kuznetsov formula. Such improvements were first deduced
for the modular group Γ = PSL(2,Z) by Iwaniec and Luo-Sarnak. The crucial step in these
works is proving a non-trivial bound on a specific spectral exponential sums over the Laplacian
eigenvalues λj .

In the case of the Prime number theorem the asymptotic (3.21) follows from Riemann-von
Mangoldt explicit formula. For the modular group an analogous formula was derived by Iwaniec,
stating that

(3.26) EΓ(X) =
∑

0<tj≤T

X1/2+itj

1/2 + itj
+O

(
X

T
logX

)
,

for any parameter T ≤ X1/2. From (3.26) we reduce the study of the error term to the study of
the spectral exponential sum

S(T,X) :=
∑

0<tj≤T

Xitj .(3.27)

By Weyl’s law we can trivially bound S(T,X) � T 2. Together with Iwaniec’s explicit formula
this recovers Selberg’s bound X3/4. Iwaniec was the first one who proved a non-trivial bound for
S(T,X). Moreover, the conjectural bound

S(T,X)�ε T
1+εXε(3.28)

would give the optimal expected bound

EΓ(X) = Oε(X
1/2+ε).(3.29)

The best results that we know towards this conjecture are due to Soundararajan-Young and
Balkanova-Frolenkov for the pointwise estimate:

EΓ(X) = Oε(X
25/36+ε)(3.30)

and due to Balog, Biró, Harcos and Maga on average:(
1

X

∫ 2X

X

|EΓ(x)|2dx

)1/2

= Oε

(
X7/12+ε

)
.
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The Burggeman-Kuznetsov formula belongs in the family of relative trace formulas. The spec-
tral side of this trace formula appears information for the Hecke eigenvalues (Fourier coefficients)
of the Maass forms. It relates ∑

j

h(tj)λj(n)λj(m)(3.31)

to arithmetic information of the group (encoded in sums of Kloosterman sums).

3.6. Open problems. 1) For the modular group SL2(Z) even the pointwise bound

EΓ(X) = Oε(X
2/3+ε)(3.32)

seems to be extremely difficult, as it follows from the Lindelöf Hypothesis for specific Dirichlet
L-functions. On the other hand, for a general cofinite group we only know Selberg’s general
bound O(X3/4) for the error term in the Prime geodesic theorem.

4. L-functions, counting problems and quantum unique ergodicity

In this last section we will discuss some problems in more details. These problems are in the
centre of modern research in the field and we will only mention some basic results about each
one of them. First we remind some basic material for L-functions.

4.1. L-functions attached to Maass forms. The theory of L-functions has its origin on the
study of Riemann’s zeta function ζ(s) and Dirichlet’s L-functions L(s, χ), where χ is a Dirichlet
character. Roughly speaking, an L-function is a function of the complex variable s given by a
Dirichlet series

∞∑
n=1

an
ns
.(4.1)

The coefficients are such that the series (4.1) converges absolutely for <(s) > A where A is some
constant depending on the sequence (an)∞n=1. In order to call the series (4.1) an L-function we
ask for extra properties; in fact we want (4.1) to have an analytic continuation on the whole
complex plane, to satisfy a functional equation relating the value of the function at s with the
value of the function at 1 − s and to have an Euler product over the primes. For the Riemann
zeta function and Dirichlet’s L-functions these properties follow using Poisson summation and
the unique factorization in Z. More precisely we have that

ζ(s) :=

∞∑
n=1

1

ns
=
∏
p

(1− p−s)−1(4.2)

satisfy the functional equation

Λ(s) = Λ(1− s)(4.3)

where Λ(s) is the completed Riemann zeta function from (2.2). Similarly L(s, χ) satisfies

L(s, χ) :=

∞∑
n=1

χ(n)

ns
=
∏
p

(1− χ(p)p−s)−1(4.4)

for χ : (Z/qZ)× → C is a Dirichlet character mod q. The functional equation is slightly more
involved in that case and contains the Gauss sum τ(χ).

For the rest of this section we focus only the case of SL2(Z). We can thus pick a common
system of Hecke-Maass forms, i.e. a family of eigenfunctions both of the Hecke operators and
the Laplace operator. The Fourier expanion (2.21) of a cusp form uj takes the form

uj(z) = 2
∑
n6=0

y1/2ρj(n)Kitj (2π|n|y)e2πinz.(4.5)
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Then the Fourier coefficients ρj(n) are related to the Hecke eigenvalues λj(n) in the following
way:

ρj(n) = ρj(1)λj(n),
ρj(1)√

cosh(πtj)
� t±εj .(4.6)

We define the Hecke L-function attached to the cusp form uj to be

L(s, uj) :=

∞∑
n=1

λj(n)

ns
, <(s) > 1.(4.7)

Then as a function of s this function has all the good properties that we expect from an L-
function: it has an analytic continuation to an entire function on the complex plane, it satisfies
a functional equation and it has an Euler product. If we define the completed L-function by

Λ(s, uj) := π−sΓ

(
s− itj

2

)
Γ

(
s+ itj

2

)
L(s, uj)(4.8)

then the function equation takes the form

Λ(s, uj) = εjΛ(1− s, uj).(4.9)

where εj = ±1 depending on whether uj is even or odd (i.e. uj(−z) = εjuj(z)). The Euler
product is a bi-product of the Hecke-multiplicativity for the Fourier coefficients λj(n):

L(s, uj) =
∏
p

(1− λj(p)p−s + p−2s)−1.(4.10)

The theory of these L-functions is of basic interest both itself but also for applications. They
appear naturally to a variety of problems, such as the Quantum unique ergodicity that we will
discuss at the end of this section. Before doing that we return to counting problems; in partic-
ular to the hyperbolic lattice counting problem which has many similarities but also important
differences with the Prime geodesic theorem.

4.2. Hyperbolic lattice point counting. Lattice point problems appear in many different
areas number theory. These kind of problems first appeared in the work of Gauss and Dirichlet.
Gauss’ circle problem asks to estimate the number of integer points inside a Euclidean circle D
with center at the origin and radius X1/2. If we denote by N(X) the number of integer points
inside this circle

N(X) = #
{
w = (a, b) ∈ Z2 : a2 + b2 ≤ x

}
,(4.11)

then an elementary geometric packing method gives

N(X) =
∑
m≤X

r(m) = πX +O(X1/2)

as X → ∞. Here r(m) = #{(a, b) ∈ Z2 : a2 + b2 = m}. The key point in Gauss’ proof is
bounding the error term E(X) = N(X)− πX by the area of a boundary strip{

X1/2 − 1/
√

2 < |z| < X1/2 + 1/
√

2
}
.

Gauss’ bound for the error term E(X) = N(X)− πX is not optimal. Using Poisson summation
Voronoi, Sierpinski, Landau and van der Corput independently derived the bound

E(X) = O(X1/3).
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This bound has slightly been improved several times. The optimal existing bound E(X) =
O
(
X517/1648+ε

)
is due to Bourgain and Watt (2018). To deal with the error term E(X) we use

its Fourier expansion (involving special functions) which can be simplified to the form

(4.12) E(X) =
X1/4

π

∞∑
n=1

r(n)

n3/4
sin
(

2π
√
nX − π

4

)
+O(1).

Hardy conjectured that one should expect E(X) = Oε(X
1/4+ε) for every ε > 0. He supported

this conjecture by proving lower bounds for the error term.
In a general topological space X one can consider a group Γ acting discontinuously on X. Let

D = {Di} be a family of compact subsets Di ⊂ X and z a point in X. The lattice point problem
is to estimate the number of points of the orbit Γz = {γz : γ ∈ Γ} which meet Di. In this setting,
Gauss’ problem is the special case X = R2, Γ = Z2 and D is the family of circles with center at
the origin (0, 0) and radius x → ∞. If X is a homogeneous space X = G/K of a Lie group G,
where K is a maximal compact subgroup of G, we take Γ to be a lattice in G. We may consider
D be a family of well-shaped compact sets or more general well-rounded sets. The case of the
hyperbolic plane is the special case G = SL2(R), K = SO2(R) since in that case we can identify:

H = SL2(R)/SO2(R).

Thus the hyperbolic lattice point problem asks to estimate the number of points in the orbit Γz
that belong in a disk of radius R and center w, i.e. to give an asymptotic formula for

#{γ ∈ Γ : ρ(γz, w) ≤ R},
or, using the standard point-pair invariant function u(z, w), for the quantity

N(X; z, w) = #{γ ∈ Γ : 4u(z, γw) + 2 ≤ X}
where X ∼ eR. We have the following theorem.

Theorem 4.1 (Selberg, Günther, Good). Let z, w be two fixed points in H and Γ be a cocompact
or cofinite Fuchsian group. Then, as X →∞, we have

N(X; z, w) =
∑

1/2<sj≤1

π1/2 Γ(sj − 1/2)

Γ(sj + 1)
uj(z)uj(w)Xsj + E(X; z, w),

where the error term satisfies the bound

E(X; z, w) = O(X2/3).

In the Euclidean circle problem, Gauss’ argument works because the area of a large Euclidean
disc dominates the length of the Euclidean circle which bounds the error term E(X). The
isoperimetric inequality for a Riemannian surface of constant curvature takes the form

4πA−KA2 ≤ L2,

where A is the area of a domain D, L is the length of the bounday of D and K is the curvature
of the surface. In the Euclidean plane we have K = 0 and Gauss’ argument applies. However,
in H the isoperimetric inequality gives A ≤ L. Indeed, the area of a hyperbolic disc of radius
R is 4π sinh2(R2 ) ∼ πeR as R → ∞ and the length of the circumference is 2π sinhR ∼ πeR as
R → ∞. Hence, the area of the disc and the length of the boundary have the same order of
growth. This explains the reason one cannot estimate the error term E(X; z, w) using on an
elementary geometric argument.

We must also emphasize that the O(X2/3)-bound should be regarded as the analogue of the
O(X1/3)-bound in the Euclidean case; however, it has not been improved for any group Γ or any
pair of points z, w. Selberg was the first who proved the bound O(X2/3), but he didn’t publish
it. For Γ cofinite, Patterson obtained the bound O(X3/4). Earlier, Fricker had already deduced
the analogue of Theorem 4.1 for the 3-dimensional hyperbolic space H3. This result finally was
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proved by Günther for all rank one symmetric spaces. Good used a different approach to give a
new proof of the O(X2/3)-bound. He proved a general sum formula that covers many cases of
decompositions of the group G = SL2(R). One of these cases corresponds to the classical lattice
problem.

We briefly describe the idea of the proof of Theorem 4.1, which is quite close to the ideas used
by Voronoi in the Euclidean problem. Assume Γ is cocompact. Let k(u) be the characteristic
function

k(u) = kX(u) = χ[0,(X−2)/4](u).(4.13)

One can easily see that

N(X; z, w) =
∑
γ∈Γ

k(u(γz, w)).(4.14)

The naive approach in the proof of Theorem 4.1 is to apply the pre-trace formula for this kernel
k(u). However, k(u) is not smooth enough. If we let h(t) = hX(t) be the Selberg/Harish-Chandra
transform of the kernel k(u), then for t and X big enough the Selberg/Harish-Chandra transform
behaves like

hX(t) ∼ |t|−3/2X1/2+it.(4.15)

In this case the pre-trace formula implies a formula of the form

E(X; z, w) =
∑
tj∈R

hX(tj)uj(z)uj(w) + o(X1/2).(4.16)

In view of (4.15) and local Weyl’s law (Theorem 2.3), the series in the expansion (4.16) di-
verges, and hence this choice of kernel fails to give an upper bound for E(X; z, w). In order to
have good estimates about the Selberg/Harish-Chandra transform one has to work with smooth
approximations of the kernel k(u). We define the kernels k±(u) by

(4.17) k+(u) =


1, for u ≤ X−2

4 ,
−4u

Y
+
X + Y − 2

Y
, for X−2

4 ≤ u ≤ X+Y−2
4 ,

0, for X+Y−2
4 ≤ u,

(4.18) k−(u) =


1, for u ≤ X−Y−2

4 ,
−4u

Y
+
X − 2

Y
, for X−Y−2

4 ≤ u ≤ X−2
4 ,

0, for X−2
4 ≤ u.

We obtain the upper bound

E(X; z, w)�
∑
tj 6=0

h±(tj)uj(z)uj(w) +O(X1/2 logX + Y ),(4.19)

where the Selberg/Harish-Chandra transform h±(t) of k±(u) for t 6= 0 satisfies the bound

h±(t)� |t|−5/2 {min{|t|, X/Y }}X1/2.(4.20)

The upper bound (4.19) implies E(X; z, w) = O(Y + XY −1/2 + X1/2 logX) and the choice
Y = X2/3 implies the bound of Theorem 4.1. The general case of a cofinite group Γ does not
affect the general argument of the proof, as the contribution of the Eisenstein series in this
problem can be treated in the same way and goes to the error term.

Numerical investigations indicate that the bound of Theorem 4.1 is far from being optimal; in
fact one should expect square root cancellation for the error term

(4.21) E(X; z, w) = Oε(X
1/2+ε)
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for every ε > 0. In the Euclidean circle problem, we know the eigenvalues r(n) and the eigenfunc-
tions appearing in the spectral expansion of the error term explicitly. This allows to improve the
bound O(X1/3). However, in the hyperbolic case only few things are known for the eigenfunctions
uj(z) and the eigenvalues λj in general. For this reason any improvement of the bound O(X2/3)
towards the conjecture (4.21) is a much more difficult problem, since it depends on capturing
cancellation on the spectral sum∑

tj>0

|tj |−3/2X1/2+itjuj(z)uj(w).(4.22)

However we know that (4.21) is optimal: Rudnick and Philips showed that for Γ cocompact or
the modular surface we have

(4.23) E(X; z, z) = Ωε

(
X1/2(log logX)1/4−ε

)
for every ε > 0.

4.3. Quantum ergodicity. Let M be a compact Riemannian manifold with Laplace-Beltrami
operator ∆M, dv the Riemannian volume on M and {φj}∞j=0 an L2-normalized sequence of
Laplace eigenfunctions with eigenvalues {λj}∞j=0 tending to ∞. The Quantum ergodicity (QE)
theorem of Schnirelman, Colin de Verdiere and Zelditch asserts that if the geodesic flow on the
unit cotangent bundle S∗M is ergodic then there exists a density one subsequence of the measures
dvj := |φj |2dv that converges weakly to dv in the spectral limit λj →∞. This is equivalent with

1

vol(B)

∫
B

|φjk |2dv →
1

vol(M)
(4.24)

for a density one subsequence {λjk} and for every continuity set B ⊂ M. In particular, the
Quantum ergodicity theorem holds for manifolds of negative curvature. Zelditch extended this
result to the case of noncompact surfaces. The main igredient in Zelditch’s proof is a nontrivial
upper bound for the quantum variance of the measures∑

λj≤Λ

∣∣∣∣ 1

vol(B)

∫
B

|φj |2dv −
1

vol(M)

∣∣∣∣2 = oB(N (Λ))(4.25)

where N (Λ) = #{λj ≤ Λ} and B is fixed.
For manifolds of negative curvature the Quantum unique ergodicity (QUE) conjecture of Rud-

nick and Sarnak predicts that there is no exceptional subsequence:

1

vol(B)

∫
B

|φj(z)|2dv(z)→ 1

vol(M)
,(4.26)

as λj → ∞ for any fixed continuity set B on M. This problem was resolved in the case φj are
Hecke–Maaß forms on compact arithmetic Riemann surfaces Γ\H by Linderstrauss with ergodic
methods and by Soundararajan in the cofinite arithmetic case.

Much before the proof of the QUE conjecture, for the special case of Γ = PSL2(Z) a striking
relation between the conjecture and estimates for L-functions was discovered by Watson. His
triple product formula, together with the spectral theorem, implies that (4.26) follows from an
estimate for an L-function of degree 6.

Theorem 4.2 (Watson). For two fixed Hecke-Maass forms u, uj of the modular surface the
triple product ∫

Γ\H
|u(z)|2uj(z)dµ(z)(4.27)

decomposes as a product of L-functions arising from u and uj. A good subconvexity bound for the
higher degree L-function of this product implies the QUE conjecture. In particular the Generalized
Riemann Hypothesis implies the QUE conjecture (with the optimal rate).
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Watson’s formula is one of the most beautiful examples in modern analytic number theory
where the connection between equidistribution problems and estimates for L-functions are very
closely related (and quite often almost equivalent).

4.4. Exercises. 1) When we restrict a Maass form uj on a fixed closed geodesic ` on Γ\H, the
average size of the period integral of uj defined by∫

`

uj(z)ds(z)

is smaller that the average size of uj (here ds denotes the arc length measure on the geodesic `).
That can been seen from the upper bound of the second moment∑

tj≤T

∣∣∣∣∫
`

uj(z)ds(z)

∣∣∣∣2 � T.(4.28)

Assume for simplicity that Γ is cocompact. Using (4.28) prove that the error term of the lattice
counting problem satisfies the average upper bound∫

`

E(X, z, w)ds(z)�w X
1/2+ε.

2) Using the Hecke multiplicativity properties of λj(n) prove the Euler product (4.10).

4.5. Open problems. 1) What is the correct order of growth for EΓ(X, z, w)? The bound
O(X2/3) has never been improved for any cofinite Fuchsian group Γ and for any pair of points
z, w.

2) For the QUE on the modular surface the conjectural rate of convergence is

1

vol(B)

∫
B

|uj(z)|2dµ(z)− 1

vol(Γ\H)
= OB,ε

(
t
−1/2+ε
j

)
.(4.29)

Up to this moment, there is no effective bound for (4.29).
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